Global slab deformation and centroid moment tensor constraints on viscosity

نویسندگان

  • L. A. Alpert
  • T. W. Becker
  • I. W. Bailey
چکیده

[1] We analyze moment tensor solutions from deep subduction zone earthquakes to determine global slab deformation patterns. Inferred strain rates are compared to predicted deformation patterns from fluid models to help constrain the first‐order radial and lateral viscosity structure of the Earth. While all slabs that reach the lower mantle are compressed at their tip, intermediate depth patterns are more complex. We compute 3‐D spherical flow with various slab rheologies and compare the angular misfit between the compressive eigenvectors of the resultant stress field and global centroid moment tensor (gCMT) solutions. We find that upper mantle slab viscosities of ∼10–100 and lower mantle viscosities of ∼30–100 times the upper mantle produce the best match to gCMTs. A 0.1 viscosity reduction in the asthenosphere seems preferred. Slab geometry and lower mantle viscosity exert significant control on deformation. Inclusion of the phase changes at 410 km and 660 km increases extensional deformation at intermediate depth and compressional deformation at the lower mantle, improving the match to gCMTs for strong slabs. Our conclusions are fairly insensitive to surface boundary conditions. However, models which include net rotations of the surface with respect to the lower mantle produce compression at intermediate depths for west directed slabs and extension for east directed slabs. Without allowing for regional variations, these models yield the best match to gCMTs. While significant deviations between model and seismicity remain, our results show that seismicity provides an underutilized constraint for slab dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions

3 DOI 10.1007/978-3-540-87974-9, © Springer-Verlag Berlin Heidelberg 2009 Abstract Subduction of oceanic lithosphere and deep slabs control several aspects of plate tectonics. We review models of subduction dynamics that have been studied over the last decade by means of numerical and analog experiments. Regional models indicate that trench rollback, trench curvature, and back-arc deformation m...

متن کامل

تعیین و پهنه‌بندی نرخ ممان لرزه‌ای ژئودزی: مطالعه خاص شبکه سراسری ژئودینامیک ایران

A new and significant source of information on earthquake studies has been provided by space geodesy. The data which are gathered by various techniques of space geodesy, can quantify potential of seismic activity in the region of interest. To achieve this goal, the main advantage of extra-terrestrial geodetic data in comparison with the conventional data from geology and seismology is the abili...

متن کامل

Variations in slab dip along the subducting Nazca Plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism

[1] Abstract: The subducting Nazca Plate shows a high degree of along-strike heterogeneity in terms of intermediate-depth seismicity ( 70–300 km), orientations of slab stress, and volcanism. We compile the intermediate-depth earthquakes of South America from the Harvard Centroid Moment Tensor (CMT) catalogue to determine along-strike dip variations, and we explore the variable level of correlat...

متن کامل

Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous

[1] We apply adjoint models of mantle convection to North America since the Late Cretaceous. The present-day mantle structure is constrained by seismic tomography and the time-dependent evolution by plate motions and stratigraphic data (paleoshorelines, borehole tectonic subsidence, and sediment isopachs). We infer values of average upper and lower mantle viscosities, provide a synthesis of Nor...

متن کامل

Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate

Transition zone slab deformation influences Earth’s thermal, chemical, and tectonic evolution. However, the mechanisms responsible for the wide range of imaged slab morphologies remain debated. Here we use 2-D thermo-mechanical models with a mobile trench, an overriding plate, a temperature and stress-dependent rheology, and a 10, 30, or 100-fold increase in lower mantle viscosity, to investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010